Changes
/* Conclusion */
==Conclusion==
Pinene, a monoterpene is known to exist as an off flavor in mango juice. Pinene exists in two structural isomers in nature, α-pinene and β-pinene. Biologically, synthesis of pinene can be summarized in two steps. In step one, acetyl CoA results in formation of dimethylallyl pyrophosphate (DMAPP) and isopentenyl pyrophosphate (IPP) via HMG CoA reductase pathway. Further, DMAPP and IPP combines to form Geranyl pyrophosphate (GPP). In step two, GPP undegoes cyclization to give pinene. Pinene cyclase I and II are the two enzymes responsible for conversion of GPP to (+)-a-pinene and (-)-a-pinene, (-) β- pinene, respectively. Production of pinene was found to be increased in mangoes as the ripen during fruit maturation. Change in temperature from 8 deg C to 12 deg C was shown to have no significant impact on pinene production in mangoes. On the other hand, aroma intensity of pinene was found to be more in unheated samples than heated samples. From these studies it can be hypothesized that to curtail the formation of pinene, an off flavor in mango juice, it is important to consider the ripening stage of fruit. Since, there was no significant change in pinene concentration with increase in tempearturetemperature, heat treatment can prove helpful in decreasing the aroma intensity of pinene in mango juice. The review has further covered isolation and analysis of pinene by GC/MS and GC-O lab techniques, from mango and grape fruits sufficiently. A comprehensive information table on various important chemical and physical properties of pinene has been presented. The IP activity in the field of pinene synthesis and application of pinene for synthesis of several other compounds have also been summarized towards the end.
==References==