
Transactional memory in hardware
Contents

1 Background
1.1 Transactional memory♦ 
1.2 Transactional programming models♦ 
1.3 Software based Transactional memory

1.3.1 DracoSTM◊ 
1.3.2 Dynamic STM (DSTM)◊ 
1.3.3 Dynamic Software Transactional Memory 2.0 (DSTM2)◊ 
1.3.4 Nonblocking Software Transactional Memory◊ 
1.3.5 Like this report?◊ 
1.3.6 Non-blocking conditions

1.3.6.1 Lock-free transactional memory⋅ 
1.3.6.2 Wait-free transactional memory⋅ 
1.3.6.3 Obstruction-free transactional memory⋅ 

◊ 

♦ 

1.4 Hardware based Transactional memory
1.4.1 Adaptive Transactional Memory Test Platform◊ 
1.4.2 Unbounded Hardware Transactional Memory (UHTM)◊ 
1.4.3 Best-effort Hardware Transactional Memory◊ 
1.4.4 Split Hardware Transaction (SpHT)◊ 
1.4.5 Virtualized Transactional Memory (VTM)◊ 
1.4.6 Conflict detection◊ 

♦ 

1.5 Hybrid Transactional memory (HyTM)
1.5.1 Phased Transactional Memory (PhTM)◊ 
1.5.2 Nonblocking Zero-Indirection Transactional Memory (NZTM)◊ 
1.5.3 Hardware-Accelerated STM (HASTM)◊ 
1.5.4 Signature-Accelerated STM (SigTM)◊ 

♦ 

• 

2 Search strategy
2.1 English Search concepts♦ 
2.2 French Search concepts♦ 
2.3 German Search concepts♦ 
2.4 Search strings♦ 

• 

3 IP Trend• 
4 Key companies• 
5 Top IPC and US Classes• 
6 Sample analysis• 
7 Patent dashboard• 
8 Like this report?• 
9 Contact Dolcera• 

Background
Transactional memory

Transactional memory is a general and flexible way to allow programs to read and modify disparate primary memory locations atomically as a
single operation, much as a database transaction can atomically modify many records on disk.

• 

Transactional memory attempts to simplify parallel programming by allowing a group of load and store instructions to execute in an atomic
way. Transactional memory is a concurrency control mechanism analogous to database transactions for controlling access to shared memory
in concurrent computing. A transaction is a piece of code that executes a series of reads and writes to shared memory.

• 

Transactional memory (TM) supports code sections that are executed atomically, i.e., so that they appear to be executed one at a time, with
no interleaving between their steps. TM significantly reduces the difficulty of writing correct concurrent programs. A good TM implementation
avoids synchronization between concurrently executed transactional sections unless they actually conflict. TM can significantly improve the
performance and scalability of concurrent programs, as well as makes them easier to write, understand and maintain.

• 

Transactional memory generally refers to a synchronization model that allows multiple threads to concurrently access a shared resource (such
as a data structure stored in memory) without acquiring a lock as long as the accesses are non-conflicting, for example, as long as the
accesses are directed to different portions of the shared resource.

• 

More details

Transactional programming models

Transactional programming models can be supported in software using software-based transactional memory (STM), in hardware using
hardware- based transactional memory (HTM), or in a combination of the two (Hybrid TM, or HyTM).

Software based Transactional memory (STM) can allow sequences of concurrent operations to be combined into atomic
transactions, thereby reducing the complexity of both programming and verification. STM is a scheme for concurrent programming
with multiple threads that uses transactions similar to those used in databases.

♦ 

Hardware based Transactional memory (HTM) system requires no read or write barriers within the transaction code. The hardware
manages data versions and tracks conflicts transparently.

♦ 

Hybrid Transactional memory (HyTM) implements Transactional memory in software so that it can use best-effort Hardware
Transactional memory (HTM) to boost performance but does not depend on HTM.

♦ 

• 

Software based Transactional memory

Software transactional memory (STM) is implemented in software. All speculative STM transactional data is stored in the system memory and
indicated to be in a non-committed state. When the STM transaction commits, any data the transaction writes is indicated as committed and
subsequently available to other threads and transactions. In certain STM systems, a flag may be set to indicate the data as committed and
accessible and available in memory to other transactions.

• 

DracoSTM

DracoSTM is a high performance lock-based C++ Software Transactional memory research library. DracoSTM uses only native
object-oriented language semantics, increasing its intuitiveness for developers while maintaining high programmability via automatic handling
of composition, locks and transaction termination.

• 

DracoSTM is a lock-based STM system. At its core, DracoSTM uses one lock per thread to implement transactional reads and writes. This
allows multiple transactions to simultaneously read and write without blocking other transactions? progress.

• 

http://en.wikipedia.org/wiki/Transactional_memory
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220070156994%22.PGNR.&OS=DN/20070156994&RS=DN/20070156994
https://www.dolcera.com/wiki/index.php?title=More_details
http://research.sun.com/spotlight/2007/2007-08-13_transactional_memory.html
http://en.wikipedia.org/wiki/Software_transactional_memory
http://www.eecs.harvard.edu/~fedorova/papers/asplos165-damron.pdf
http://eces.colorado.edu/~gottschl/dracoSTM/pubs/lcsd07-dracostm.pdf


Dynamic STM (DSTM)

Dynamic Software Transactional Memory (DSTM) is a low-level application programming interface (API) for syn-chronizing shared data
without using locks.

• 

DSTM supports dynamic-sized data structures. DSTM has non-blocking implementation. The non-blocking property is obstruction-freedom.
Dynamic means that the set of locations accessed by the transaction is not known in advance and is determined during its execution.

• 

DSTM techniques allow transactions and transactional objects to be created dynamically.Transactions may determine the sequence of objects
to access based on the values observed in objects accessed earlier in the same transaction. DSTM is well suited to the implementation of
dynamic-sized data structures such as lists and trees.

• 

Dynamic Software Transactional Memory 2.0 (DSTM2)

DSTM2 is a Java-based software library that provides a flexible framework for implementing STM. DSTM2 significantly improves the
programming interface of its predecessor DSTM. The code is provided in Java libraries and any Java programmer can use it easily. DSTM2
allows researchers to plug in their STM implementations and directly compare them with others.

• 

The DSTM2 library assumes that multiple concurrent threads share data objects. The DSTM2 library provides a new kind of thread that can
execute transactions, which access shared atomic objects. DSTM2 threads provide methods for creating new atomic classes and executing
transactions.

• 

Nonblocking Software Transactional Memory

Nonblocking STMs are obstruction free. Nonblocking Software Transactional Memory guarantees that, if a transaction is repeatedly retried
and eventually encounters no interference from other transactions, then eventually the transaction commits successfully.

• 

Nonblocking STM ?steals? ownership of a memory location from another transaction, rather than waiting for the other transaction to explicitly
release it. Accessing stolen locations is more complicated and expensive than accessing unstolen ones, but stealing is worthwhile in order to
avoid waiting for another transaction that is delayed for a long time.

• 

Like this report?

This is only a sample report with brief analysis
Dolcera can provide a comprehensive report customized to your needs

Buy the customized report from Dolcera

Patent Analytics Services Market Research Services Purchase Patent Dashboard

Patent Landscape Services Dolcera Processes Industry Focus

Patent Search Services Patent Alerting Services Dolcera Tools

Non-blocking conditions

Lock-free transactional memory

Lock-free transactional memory: A transactional memory implementation is lock-free if all its operations are lock-free and if some thread
repeatedly attempts to commit transactions, then eventually some thread performs a successful commit.

• 

Lock-freedom: An implementation of an operation is lock-free if after a finite number of steps of any execution of that operation, some
operation execution completes (irrespective of the timing behavior of any concurrent operation executions).

• 

Wait-free transactional memory

Wait-free transactional memory: A transactional memory implementation is wait-free if all its operations are wait-free and any thread that
repeatedly attempts to commit transactions eventually performs a successful commit.

• 

Wait-freedom: An implementation of an operation is wait-free if after a finite number of steps of any execution of that operation, that operation
execution completes (irrespective of the timing behavior of any concurrent operation executions).

• 

Obstruction-free transactional memory

Obstruction-free transactional memory: A transactional memory implementation is obstruction-free if all its operations are obstruction-free
and if some thread repeatedly attempts to commit transactions, and runs in isolation after some point, then it eventually performs a successful
commit.

• 

Obstruction-freedom: An implementation of an operation is obstruction-free if every operation execution that executes in isolation after some
point completes after a finite number of steps.

• 

Hardware based Transactional memory

HTM comprises hardware transactions implemented entirely in processor hardware. For hardware transactions, data may be stored in
hardware registers and cache, such that all cache actions are done atomically in hardware and data in the HTM is only written to the main
memory upon committing the transaction. The HTM holds all the speculative writes without propagating to the main system memory, such as
a Random Access Memory (RAM) device, until the transaction commits. If the hardware transaction aborts, then the cache lines holding the
tentative writes in the HTM are discarded. HTM hardware transactions may utilize cache coherency protocols to detect and manage conflicts
between HTM hardware transactions. The cache coherency protocols keep track of accesses within a hardware transaction. If two hardware
transactions are accessing a same memory location, then the HTM aborts one transaction if there is a conflict, else the transaction's changes
may be committed to the system memory.

• 

HTM transactions usually require less overhead then STM transactions because HTM transactions occur entirely in hardware. HTM
transactions may be limited to smaller transactions due to hardware limitations, whereas STM transactions can handle large and longer
transactions. Source

• 

The multi-core processor Rock supports Hardware Transactional Memory (HTM).• 
Rock?s HTM feature is an important but modest first step in integrating HTM support into a mainstream commercial multi-core processor.• 
Rock supports HTM with two new instructions, chkpt and commit, and a new checkpoint status (cps) register. A transaction is started by a
chkpt instruction, and is terminated by either a commit instruction or the failure of the transaction. If a transaction fails, some indication of the
cause of failure is stored in the cps register, and control is transferred to the PC-relative offset (fail pc) specified by the chkpt instruction.

• 

Adaptive Transactional Memory Test Platform

The Adaptive Transactional Memory Test Platform (ATMTP) provides a ?rst-order approximation of the success and failure characteristics of
transactions on Rock. ATMTP will allow developers to test and tune their code for Rock.

• 

http://research.sun.com/scalable/pubs/PODC03.pdf
http://research.sun.com/scalable/pubs/OOPSLA2006.pdf
http://research.sun.com/scalable/pubs/PPoPP2008-NBSTM.pdf
mailto:info@dolcera.com
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services
http://www.dolcera.com/website_prod/services/business-research-services
http://www.dolcera.com/website_prod/tools/patent-dashboard
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/patent-search/patent-landscapes
http://www.dolcera.com/website_prod/research-processes
http://www.dolcera.com/website_prod/industries
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/patent-search/patent-landscapes
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/alerts-and-updates
http://www.dolcera.com/website_prod/tools
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=3&f=G&l=50&co1=AND&d=PTXT&s1=transactional.TI.&s2=memory.TI.&OS=TTL/transactional+AND+TTL/memory&RS=TTL/transactional+AND+TTL/memory
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220070143287%22.PGNR.&OS=DN/20070143287&RS=DN/20070143287
http://research.sun.com/scalable/pubs/TRANSACT2008-ATMTP-Apps.pdf
http://www.cs.wisc.edu/gems/doc/gems-wiki/moin.cgi/ATMTP


ATMTP correctly models Rock?s HTM-related instructions, and fairly accurately reflects most of the circumstances that cause Rock
transactions to fail. ATMTP provides a good platform for experimenting with HTM-based code that will behave similarly on Rock.

• 

Unbounded Hardware Transactional Memory (UHTM)

UHTM is commited in-cache. When not possible, hardware ?spills? transaction information into memory, allowing (essentially) unbounded
transactions. UTM is more appealing for programmer, but is significantly more complicated. Unbounded means that there is no limit on the
number of locations accessed by the transaction.

• 

Best-effort Hardware Transactional Memory

Best-effort Hardware Transactional Memory transactions are committed in-cache and aborted if they don?t fit. Best-effort Hardware
Transactional Memory has simple design.Best-effort Hardware Transactional Memory violates Principle of Least Astonishment. Programmer
should not have to think about cache mapping, cache size, cache organization, etc.

• 

Best-effort HTM does not guarantee to support transactions of any size and duration, and thus is free to simply abort transactions that exceed
on-chip resources for HTM or encounter difficult events or situations.

• 

Split Hardware Transaction (SpHT)

The Split Hardware Transaction (SpHT)uses minimal software support to combine multiple segments of an atomic block, each executed using
a separate hardware transaction, into one atomic operation. The idea of segmenting transactions can be used for many purposes, including
nesting, local retry, or Else, and user-level thread scheduling. SpHT overcomes the limited expressive power of best-effort HTM while
imposing overheads dramatically lower than STM and preserving useful guarantees such as strong atomicity provided by the underlying HTM.

• 

Virtualized Transactional Memory (VTM)

Virtualized TM (VTM) maintains atomicity and isolation even if a transaction is interrupted by a cache overflow or a system event. VTM maps
the key bookkeeping data structures for transactional execution (read set, write set, write buffer or undo-log) to virtual memory, which is
effectively unbounded and is unaffected by system interruptions. The hardware caches hold the working set of these data structures. VTM
also suggested the use of hardware signatures to avoid redundant searches through structures in virtual memory.

• 

Conflict detection

HTM systems rely on a computer?s cache hierarchy and the cache coherence protocol to implement conflict detection. Caches observe all
reads and writes issued by a processor, can buffer a significant amount of data, and can be searched efficiently because of their associative
organization. All HTMs modify the first-level caches, but the approach extends to higher-level caches, both private and shared.

• 

Conflict detection occurs as other processors receive the coherence messages from the committing transaction. Hardware looks up the
received block address in the local caches. If the block is in a cache and has its R or W bit set, there is a read-write or a write-write conflict
between the committing and the local transaction. The hardware signals a software handler, which aborts the local transaction and potentially
retries it after a backoff period.

• 

Direct memory updates: For direct updates, the hardware transparently logs the original value in a memory block before its first modification
by a transaction. If the transaction aborts, the log is used to undo any memory updates.

• 

Early conflict detection : For early conflict detection, the hardware acquires exclusive access to the cache block on the first write and
maintains it until the transaction commits.

• 

Hybrid Transactional memory (HyTM)

The HyTM approach is to provide an STM implementation that does not depend on hardware support beyond what is widely available today,
and also to provide the ability to execute transactions using whatever HTM support is available in such a way that the two types of
transactions can coexist correctly.

• 

The key idea to achieving correct interaction between software transactions and hardware transactions is to augment hardware transactions
with additional code that ensures that the transaction does not commit if it conflicts with an ongoing software transaction.

• 

Phased Transactional Memory (PhTM)

Phased Transactional Memory (PhTM)supports switching between different ?phases?, each implemented by a different form of transactional
memory support. PhTM allows to adapt between a variety of different transactional memory implementations.

• 

Nonblocking Zero-Indirection Transactional Memory (NZTM)

Nonblocking Zero-Indirection Transactional Memory (NZTM) is a nonblocking, zero-indirection object-based hybrid transactional memory
system. NZTM can execute transactions using best-effort hardware transactional memory or by using compatible software transactional
memory system.

• 

Hardware-Accelerated STM (HASTM)

Hardware-Accelerated STM (HASTM) system proposes hardware support to reduce the overhead of STM instrumentation. The
supplementary hardware allows software to build fast filters that could accelerate the common case of read set maintenance.

• 

HASTM provides the STM with two capabilities through per-thread mark bits at the granularity of cache blocks.• 
Conflict detection: Software can check if a mark bit was previously set for a given block of memory and that no other thread wrote to the
block since it was marked.

• 

Validation: Software can query if potentially there were writes by other threads to any of the memory blocks that the thread marked.• 

Signature-Accelerated STM (SigTM)

Signature-Accelerated STM (SigTM)uses hardware signatures to encode the read set and write set for software transactions. A hardware
Bloom filter outside of the caches computes the signatures.b Software instrumentation provides the filters with the addresses of the objects
read or written within a transaction. To detect conflicts, hardware in the computer monitors coherence traffic for requests for exclusive
accesses to a cache block, which indicates a memory update.

• 

The hardware tests if the address in a request is potentially in a transaction?s read or write set by examining the transaction?s signatures. If
so, the memory reference is a potential conflict and the STM can either abort a transaction or turn to software validation.

• 

Search strategy
English Search concepts

Transactional memory Concurrency control Shared memory access

http://supertech.csail.mit.edu/papers/xaction.pdf
http://research.sun.com/scalable/pubs/TRANSACT2008-ATMTP-Apps.pdf
http://research.sun.com/scalable/pubs/PPoPP2008-SpHT.pdf
http://www.cs.wisc.edu/trans-memory/misc-papers/moir:hybrid-tm:tr:2005.pdf
http://research.microsoft.com/~larus/Papers/p80-larus.pdf
http://research.sun.com/scalable/pubs/TRANSACT2007-PhTM.pdf
http://research.sun.com/scalable/pubs/TRANSACT2007-NZTM.pdf
http://research.microsoft.com/~larus/Papers/p80-larus.pdf
http://research.microsoft.com/~larus/Papers/p80-larus.pdf
http://portal.acm.org/citation.cfm?id=1250673


S.
No.

Atomic memory
transactions

1 Transactional memory Atomic memory
transactions Concurrency control Shared memory

synchronization

2 Transactional execution
AND memory

Atomically memory
accesses Concurrent computing Shared memory access

3 Hybrid transactional
memory

4 Software transactional
memory

5 Hardware transactional
memory

French Search concepts

S.
No. Transactional memory Atomic memory

transactions Concurrency control Shared memory access

1 mémoire transactionnelle opérations de
mémoire atomique contrôle de concurrence La synchronisation de

mémoire partagée

2 l'exécution des transactions
AND mémoire

accès à la
mémoire atomique programmation concurrente Accès à la mémoire

partagée

3 hybride mémoire
transactionnelle

4 mémoire logiciel
transactionnel

5 mémoire matérielle
transactionnel

German Search concepts

S.
No. Transactional memory Atomic memory

transactions Concurrency control Shared memory access

1 transaktionalen Speicher Atom-Speicher-Transaktionen Concurrency Kontrolle Shared-Memory-Synchronisation

2 transaktionale Ausführung
AND Speicher atomar Speicherzugriffe Concurrent Computing Shared-Memory-Zugriff

3 Hybrid transaktionalen
Speicher

4 Software transaktionalen
Speicher

5 Hardware transaktionalen
Speicher

Search strings

Concepts Scope Search string No of hits

Transactional
memory Search scope: US Granted US

Applications EP-A EP-B WO JP
DE-C,B DE-A DE-T DE-U GB-A
FR-A;
Claims, Title or Abstract
Years: 1836-2008

(transactional ADJ memory) OR ((transactional ADJ execution)
SAME memory) 167

Other
Keywords

(atomic*4 NEAR2 memory NEAR2 (transaction*1 OR access*2))
OR (((concurrency ADJ control) OR (concurrent ADJ
computing)) WITH ((shared ADJ memory) AND (synchronization
OR access*2)))

24

Final 1 OR 2
82 unique (189

patents including
families)

IP Trend
75 patents published in the last 10 years.• 
Patent filing is more in the last 4 years(75 %)• 



Year wise graph

Key companies
Intel(26 patents) and Sun Microsystems (19 patents) are major players.• 
Microsoft(11 patents) and IBM(7 patents) are next to them.• 

Top Assignees

Top IPC and US Classes
Top IPC class: G06F• 

https://www.dolcera.com/wiki/index.php?title=File:Year_wise_graph-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:Year_wise_graph-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:Assignee_graph-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:Assignee_graph-Transactional_memory.jpg


IPC class

Top US class: 711, 707, 712, 717, 718• 

US class

Sample analysis

S.No. Patent/Publication
No. Title Transactional memory Summary

1 US20040015642A1
Software transactional
memory for dynamically
sizable shared data
structures

Dynamic STM (DSTM)

A software transactional memory that allows concurrent
non-blocking access to a dynamically sizable data structure
defined in shared storage managed by the software
transactional memory is described. The implementation is
called dynamic software transactional memory (DSTM).
DSTM techniques allow transactions and transactional objects
to be created dynamically. The non-blocking property
considered here is obstruction-freedom.

2 US20060085591A1
Hybrid hardware and
software implementation
of transactional memory
access

Phased Transactional
Memory (PhTM)

The invention relates to a hybrid hardware and software
implementation of transactional memory accesses in a
computer system. A processor including a transactional cache
and a regular cache is utilized in a computer system that
includes a policy manager to select one of a first mode (a
hardware mode) or a second mode (a software mode) to
implement transactional memory accesses. In the hardware
mode the transactional cache is utilized to perform read and
write memory operations and in the software mode the regular
cache is utilized to perform read and write memory operations.

https://www.dolcera.com/wiki/index.php?title=File:IPC_class-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:IPC_class-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:US_class-Transactional_memory.jpg
https://www.dolcera.com/wiki/index.php?title=File:US_class-Transactional_memory.jpg
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.html&r=1&f=G&l=50&s1=%2220040015642%22.PGNR.&OS=DN/20040015642&RS=DN/20040015642
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20060085591.PGNR.&OS=DN/20060085591&RS=DN/20060085591


3 US20070028056A1 Direct-update software
transactional memory Dynamic STM (DSTM)

A transactional memory programming interface allows a
thread to directly and safely access one or more shared
memory locations within a transaction while maintaining
control structures to manage memory accesses to those same
locations by one or more other concurrent threads. Each
memory location accessed by the thread is associated with an
enlistment record, and each thread maintains a transaction log
of its memory accesses.

4 US20070156780A1
Protecting shared
variables in a software
transactional memory
system

Dynamic STM (DSTM)

For a variable accessed at least once in a software-based
transactional memory system (STM) defined (STM-defined)
critical region of a program, modifying an access to the
variable that occurs outside any STM-defined critical region
system by starting a hardware based transactional memory
based transaction, within the hardware based transactional
memory based transaction, checking if the variable is currently
owned by a STM transaction, If the variable is not currently
owned by a STM transaction, performing the access and then
committing the hardware based transactional memory
transaction and if the variable is currently owned by a STM
transaction, performing a responsive action.

5 US20070156994A1 Unbounded transactional
memory systems

Unbounded Hardware
Transactional Memory

(UHTM)

Methods and apparatus to provide unbounded transactional
memory systems are described. Transactional memory is
implemented through a table lookup mechanism. To access a
shared resource, a thread may first check a table stored in
memory to determine whether another thread is accessing the
same portion of the shared resource. Accessing a table that is
stored in memory may generate overhead that decreases
performance.

6 US20070239942A1 Transactional memory
virtualization

Virtualized
Transactional Memory

(VTM)

Methods and apparatus to provide transactional memory
execution in a virtualized mode are described. Data
corresponding to a transactional memory access request is
stored in a portion of a memory after an operation
corresponding to the transactional memory access request
causes an overflow and a stored value may be updated for an
occurrence of the overflow.

7 US20070300238A1
Adapting software
programs to operate in
software transactional
memory environments

Dynamic Software
Transactional Memory

2.0 (DSTM2)

Software transactional memory is used in non-managed
language environments and with legacy codes without
requiring a software programmer to change the programming
paradigm they are currently used to. STM adapter system
automatically transforms all the binary code executed within
that block to execute atomically. STM adapter system
automatically transforms lock-based critical sections in
existing binary code to atomic blocks,

8 US20080005504A1
Global overflow method
for virtualized
transactional memory

Virtualized
Transactional Memory

(VTM)

A method and apparatus for virtualizing and/or extending
transactional memory is described. Transactions are executed
using local shared transactional memory, such as a cache
memory. Upon overflowing the shared transactional memory,
the transactional memory is virtualized and/or extended into a
higher-level memory, such as a system memory.

9 US20080098374A1
Method and apparatus
for performing dynamic
optimization for software
transactional memory

Dynamic STM (DSTM)

The present invention relates to a method and apparatus for
performing dynamic optimization for STM. An optimistically
immutable field is determined in the transaction to write. The
transaction optimization unit keeps track of the status of object
and class fields in a transaction. The transaction optimization
unit invalidates methods corresponding to an optimistically
immutable field in response to determining that the field has
been written to and is therefore not immutable.

10 WO2008088931A2

FACILITATING
EFFICIENT
TRANSACTIONAL
MEMORY AND ATOMIC
OPERATIONS VIA
CACHE LINE MARKING

Hardware-Accelerated
STM (HASTM)-Conflict

detection

The system starts by executing a transaction for a thread,
wherein executing the transaction involves placing load-marks
on cache lines which are loaded during the transaction and
placing store-marks on cache lines which are stored to during
the transaction. Upon completing the transaction, the system
releases the load-marks and the store-marks from the cache
lines which were load-marked and store-marked during the
transaction. Note that during the transaction, the load-marks
and store-marks prevent interfering accesses from other
threads to the cache lines.

Patent dashboard
Patent Categorization in Dashboard

Like this report?
This is only a sample report with brief analysis

Dolcera can provide a comprehensive report customized to your needs

Buy the customized report from Dolcera

http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20070028056.PGNR.&OS=DN/20070028056&RS=DN/20070028056
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20070156780.PGNR.&OS=DN/20070156780&RS=DN/20070156780
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20070156994.PGNR.&OS=DN/20070156994&RS=DN/20070156994
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20070239942.PGNR.&OS=DN/20070239942&RS=DN/20070239942
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20070300238.PGNR.&OS=DN/20070300238&RS=DN/20070300238
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20080005504.PGNR.&OS=DN/20080005504&RS=DN/20080005504
http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=1&f=G&l=50&d=PG01&p=1&S1=20080098374.PGNR.&OS=DN/20080098374&RS=DN/20080098374
http://www.wipo.int/pctdb/en/fetch.jsp?LANG=ENG&DBSELECT=PCT&SERVER_TYPE=19-10&SORT=41253138-KEY&TYPE_FIELD=256&IDB=0&IDOC=1629252&C=10&ELEMENT_SET=B&RESULT=1&TOTAL=1&START=1&DISP=25&FORM=SEP-0/HITNUM,B-ENG,DP,MC,AN,PA,ABSUM-ENG&SEARCH_IA=US2008050081&QUE
https://www.dolcera.com/auth/dashboard/dashboard.php?workfile_id=388
mailto:info@dolcera.com


Patent Analytics Services Market Research Services Purchase Patent Dashboard

Patent Landscape Services Dolcera Processes Industry Focus

Patent Search Services Patent Alerting Services Dolcera Tools

Contact Dolcera
Samir Raiyani

Email: info@dolcera.com
Phone: +1-650-269-7952

http://www.dolcera.com/website_prod/services/ip-patent-analytics-services
http://www.dolcera.com/website_prod/services/business-research-services
http://www.dolcera.com/website_prod/tools/patent-dashboard
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/patent-search/patent-landscapes
http://www.dolcera.com/website_prod/research-processes
http://www.dolcera.com/website_prod/industries
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/patent-search/patent-landscapes
http://www.dolcera.com/website_prod/services/ip-patent-analytics-services/alerts-and-updates
http://www.dolcera.com/website_prod/tools
mailto:info@dolcera.com

	pdf-book66516fab76a04

