

# 1998360072

AN

1998360072 EMBASE

TI

Moderate intake of n-3 fatty acids for 2 months has no detrimental effect on glucose metabolism and could ameliorate the lipid profile in type 2 diabetic men: Results of a controlled study.

AU

Luo J.; Rizkalla S.W.; Vidal H.; Oppert J.-M.; Colas C.; Boussairi A.; Guerre-Millo M.; Chapuis A.-S.; Chevalier A.; Durand G.; Slama G.

CS

G. Slama, Department of Diabetes, Hotel-Dieu, 1, place du Parvis Notre-Dame, 75181 Paris Cedex 04, France

SO

Diabetes Care, (1998) Vol. 21, No. 5, pp. 717-724. .  
Refs: 39  
ISSN: 0149-5992 CODEN: DICAD2

CY

United States

DT

Journal; Article

FS

003 Endocrinology  
029 Clinical Biochemistry  
037 Drug Literature Index

LA

English

SL

English

ED

Entered STN: 19 Nov 1998  
Last Updated on STN: 19 Nov 1998

AB

OBJECTIVE - To evaluate the effect of a moderate dose of fish oil on glycemic control and in vivo insulin action in type 2 diabetic men with elevated plasma triacylglycerols and to determine the effect of the same treatment on gene expression of GLUT4, lipoprotein lipase (LPL), and hormone-sensitive lipase (HSL) in the abdominal adipose tissue.  
RESEARCH DESIGN AND METHODS - A total of 12 type 2 diabetic men were randomly allocated to 2 months of 6 g daily of either fish oil or sunflower oil, separated by a 2- month washout interval, in a double-blind crossover design. RESULTS - For glucose metabolism, 2 months of fish oil supplementation compared with sunflower oil led to similar fasting plasma insulin, glucose, and HbA1c. Basal hepatic glucose production did not increase after fish oil. There was no difference in insulin suppression of hepatic glucose production nor in insulin stimulation of whole-body glucose disposal measured by the euglycemic-hyperinsulinemic clamp. Fish oil did not ameliorate the low mRNA level of GLUT4 in adipose tissue of these patients. For lipid profile, fish oil lowered plasma triacylglycerol more than sunflower oil ( $P < 0.05$ ) and tended to increase the amount of mRNA of both LPL and HSL in adipose tissue. CONCLUSIONS - A moderate dose of fish oil did not lead to deleterious effects on glycemic control or whole-body insulin sensitivity in type 2 diabetic men, with preserved triacylglycerol-lowering capacities.

CT

Medical Descriptors:  
\*non insulin dependent diabetes mellitus: DT, drug therapy  
\*fat intake  
glucose homeostasis  
gene expression regulation  
enzyme synthesis  
protein expression  
glucose blood level  
cholesterol blood level  
lipoprotein blood level  
triacylglycerol blood level  
insulin blood level  
human  
male  
clinical article  
clinical trial  
double blind procedure  
crossover procedure  
controlled study  
adult

oral drug administration  
article

Drug Descriptors:

\*sunflower oil: CT, clinical trial  
\*sunflower oil: CM, drug comparison  
\*sunflower oil: DT, drug therapy  
\*omega 3 fatty acid: CT, clinical trial  
\*omega 3 fatty acid: CM, drug comparison  
\*omega 3 fatty acid: DT, drug therapy  
\*fish oil: CT, clinical trial  
\*fish oil: CM, drug comparison  
\*fish oil: DT, drug therapy  
glucose: EC, endogenous compound  
triacylglycerol: EC, endogenous compound  
cholesterol: EC, endogenous compound  
high density lipoprotein cholesterol: EC, endogenous compound  
lipoprotein a: EC, endogenous compound  
apolipoprotein al: EC, endogenous compound  
insulin: EC, endogenous compound  
glucose transporter: EC, endogenous compound  
lipoprotein lipase: EC, endogenous compound

RN

(sunflower oil) 8001-21-6; (fish oil) 8016-13-5; (glucose) 50-99-7,  
84778-64-3; (cholesterol) 57-88-5; (insulin) 9004-10-8; (lipoprotein  
lipase) 83137-80-8, 9004-02-8